The spatial distribution of cavitation induced acoustic emission, sonoluminescence and cell lysis in the field of a shock wave lithotripter.

نویسندگان

  • A J Coleman
  • M Whitlock
  • T Leighton
  • J E Saunders
چکیده

This study examines the spatial distribution of various properties attributed to the cavitation field generated by a shock wave lithotripter. These properties include acoustic emission and sonoluminescence, which result from violent bubble collapse, and the degree of cell lysis in vitro, which appears to be related to cavitation. The acoustic emission detected with a 1 MHz, 12 cm diameter focused hydrophone occurs in two distinct bursts. The immediate signal is emitted from a small region contained within the 4 MPa peak negative pressure contour. A second, delayed, burst is emitted from a region extending further along the beam axis. The delay between these two bursts has also been mapped, and the longest delay occurs at positions close to the regions of maximum peak negative pressure. Sonoluminescence from both single and multiple shocks occurs in a broader region than the acoustic emission but the measurement technique does not allow time resolution of the signal. Cell lysis occurs in a relatively small region that correlates closely with the immediate acoustic emission for a shock propagating in a gelatine solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical haemolysis in shock wave lithotripsy (SWL): II. In vitro cell lysis due to shear.

In this work we report injury to isolated red blood cells (RBCs) due to focused shock waves in a cavitation-free environment. The lithotripter-generated shock wave was refocused by a parabolic reflector. This refocused wave field had a tighter focus (smaller beam width and a higher amplitude) than the lithotripter wave field, as characterized by a membrane hydrophone. Cavitation was eliminated ...

متن کامل

Detachment and sonoporation of adherent HeLa-cells by shock wave-induced cavitation.

The interaction of lithotripter-generated shock waves with adherent cells is investigated using high-speed optical techniques. We show that shock waves permeabilize adherent cells in vitro through the action of cavitation bubbles. The bubbles are formed in the trailing tensile pulse of a lithotripter-generated shock wave where the pressure drops below the vapor pressure. Upon collapse of cavita...

متن کامل

Cavitation bubble dynamics.

The dynamics of cavitation bubbles on water is investigated for bubbles produced optically and acoustically. Single bubble dynamics is studied with laser produced bubbles and high speed photography with framing rates up to 20.8 million frames per second. Examples for jet formation and shock wave emission are given. Acoustic cavitation is produced in water in the interior of piezoelectric cylind...

متن کامل

Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.

The spatiotemporal dynamics of cavitation bubble growth and collapse in shock-wave lithotripsy in a free field was studied experimentally. The lithotripter was equipped with two independently triggerable layers of piezoceramics. The front and back layers generated positive pressure amplitudes of 30 MPa and 15 MPa, respectively, and -10 MPa negative amplitude. The time interval between the launc...

متن کامل

Dynamics of Bubble Oscillation in Constrained Media and Mechanisms of Vessel Rupture in Shock Wave Lithotripsy

Rupture of small blood vessels is a primary feature of the tissue injury associated with shock wave lithotripsy (SWL), and cavitation has been implicated as a potential mechanism. To improve our understanding of the damage mechanism, dynamics of SWL-induced bubbles in constrained media were investigated. Silicone tubing and cellulose hollow fibers (i.d.=0.2 ~ 1.5 mm) were used to fabricate vess...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 38 11  شماره 

صفحات  -

تاریخ انتشار 1993